Assessing the effects of pseudo-absences on predictive distribution model performance

نویسندگان

  • Rosa M. Chefaoui
  • Jorge M. Lobo
چکیده

Modelling species distributions with presence data from atlases, museum collections and databases is challenging. In this paper, we compare seven procedures to generate pseudoabsence data, which in turn are used to generate GLM-logistic regressed models when reliable absence data are not available. We use pseudo-absences selected randomly or by means of presence-only methods (ENFA and MDE) to model the distribution of a threatened endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence selection method greatly influences the percentage of explained variability, the scores of the accuracy measures and, most importantly, the degree of constraint in the distribution estimated. As we extract pseudo-absences from environmental regions further from the optimum established by presence data, themodels generated obtain better accuracy scores, and over-prediction increases.When variables other than environmental ones influence the distribution of the species (i.e., non-equilibrium state) and precise information on absences is non-existent, the random selection of pseudo-absences or their selection from environmental localities similar to those of species presence data generates the most constrained predictive distribution maps, because pseudo-absences can be located within environmentally suitable areas. This study shows that ifwedonothave reliable absencedata, themethod of pseudo-absence selection strongly conditions the obtained model, generating different model predictions in the gradient between potential and realized distributions. Gu and Swihart, 2004; Segurado and Araújo, 2004). However,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive Risk Mapping of Leptospirosis for North of Iran Using Pseudo-absences Data

Leptospirosis is a common zoonosis disease with a high prevalence in the world and is recognized as an important public health drawback in both developing and developed countries owing to epidemics and increasing prevalence. Because of the high diversity of hosts that are capable of carrying the causative agent, this disease has an expansive geographical reach. Various environmental and social ...

متن کامل

Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns

Identification of areas containing high biological diversity (‘hotspots’) from species presence-only data has become increasingly important in species and ecosystem management when presence/absence data is unavailable. However, as presence-only data sets lack any information on absences and as they suffer from many biases associated with the ad hoc or non-stratified sampling, they are often ass...

متن کامل

Comparing pseudo-absences generation techniques in Boosted Regression Trees models for conservation purposes: A case study on amphibians in a protected area

Boosted Regression Trees (BRT) is one of the modelling techniques most recently applied to biodiversity conservation and it can be implemented with presence-only data through the generation of artificial absences (pseudo-absences). In this paper, three pseudo-absences generation techniques are compared, namely the generation of pseudo-absences within target-group background (TGB), testing both ...

متن کامل

Assessing the Conservation Status of an Iberian Moth Using Pseudo-Absences

Knowing the distribution of endangered species is of substantial importance for conservation. We considered a useful approach for modeling species distribution when managing information from atlases and museums but when absence data is not available. By modeling the distribution for Graellsia isabelae, a threatened moth species, we assessed its current conservation status and identified its mos...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007